Главная
Статьи





28.05.2022


28.05.2022


28.05.2022


28.05.2022


28.05.2022






Иодометрия

28.01.2022

Иодометрия — титриметрический (объёмный) метод определения веществ, основанный на реакциях окисления-восстановления (разновидность оксидиметрии) с участием иода или иодида калия:

I 3 − + 2 e − ⇄ 3 I − {displaystyle {mathsf {I_{3}^{-}+2e^{-} ightleftarrows 3I^{-}}}}

Стандартный электродный потенциал данной реакции составляет +0,545 В.

Для реакции

I 2 + 2 e − → 2 I − {displaystyle {mathsf {I_{2}+2e^{-} ightarrow 2I^{-}}}}

стандартный электродный потенциал составляет +0.536 В.

Прямое иодометрическое титрование непосредственно раствором I2 может быть использовано, в частности, для титрования восстановителей в присутствии избытка KI:

Этим способом определяют концентрацию As(III), Sn(II), Sb(III), сульфидов, сульфитов, тиосульфатов и др.:

N a 2 S O 3 + H 2 O + I 2 → N a 2 S O 4 + 2 H I {displaystyle {mathsf {Na_{2}SO_{3}+H_{2}O+I_{2} ightarrow Na_{2}SO_{4}+2HI}}}

Возможно также определение восстановителей с избытком иода, непрореагировавшее количество которого определяется титрованием тиосульфата натрия.

Косвенное иодометрическое титрование используется для титрования окислителей; в этом случае определяемые вещества взаимодействуют с избытком KI с образованием иода, который оттитровывается раствором тиосульфата натрия. Этот способ используется для определения концентрации Cu(II), H2O2, Br2, BrO3-, ClO-

2 K I + H 2 O 2 → 2 K O H + I 2 {displaystyle {mathsf {2KI+H_{2}O_{2} ightarrow 2KOH+I_{2}}}} 2 N a 2 S 2 O 3 + I 2 → N a 2 S 4 O 6 + 2 N a I {displaystyle {mathsf {2Na_{2}S_{2}O_{3}+I_{2} ightarrow Na_{2}S_{4}O_{6}+2NaI}}}

Иодометрический метод анализа используется также для определения концентрации ионов H+:

I O 3 − + 5 I − + 6 H + → 3 I 2 + 3 H 2 O {displaystyle {mathsf {IO_{3}^{-}+5I^{-}+6H^{+} ightarrow 3I_{2}+3H_{2}O}}}

Иодометрический метод анализа является также основой метода Фишера по определению воды в органических растворителях.

Определение конечной точки титрования

Наиболее распространённым индикатором для определения конечной точки титрования служит крахмал, который образует с иодом ярко окрашенный аддукт темно-синего цвета. Другими индикаторами служат кумарин, производные α-пирона. Конечную точку титрования определяют также при помощи физико-химических методов анализа — потенциометрически, амперометрически и др.

Погрешности в определении конечной точки титрования связаны с летучестью иода, возможностью изменения концентрации иодида калия вследствие его окисления кислородом воздуха, разложения тиосульфата натрия в кислой среде или протекания реакции тиосульфата натрия с иодом в щелочной среде по иному механизму реакции.

Комментарии

  • ↑ Идею использовать в титриметрии реакцию перехода иода в иодиды в присутствии крахмала предложил французский ботаник Гутон де ла Бийардьер (1826) для определения хлорной извести. Систематическое применение иодометрического метода в химическом анализе началось с работы Дюпаскье, использовавшего иодометрию для определения сероводорода в воде (1840). В 1853 году Бунзен предложил иодометрию в качестве общего метода определения окислителей; для титрования выделяющегося иода Бунзен использовал сернистую кислоту. Тиосульфат натрия как реагент для титрования иода предложен в 1853 году Шварцем (Karl Leonhard Heinrich Schwarz, 1824–1890).